prof. RNDr. Ivo Nezbeda, DrSc.

Místnost: 3.13 (CPTO)

Telefon:  +420 475 286 821

E-mail: Havlica@icpf.cas.cz

Konzultační hodiny:  dle předchozí domluvy

 

Profesní zaměření
molekulární teorie kapalin a modely kapalin; stavové chování kapalin a kapalných směsí; mezimolekulární interakce; počítačové simulace a jejich aplikace

Od r. 1972 pracoval I. Nezbeda v oddělení fyzikální chemie (nyní Termodynamická laboratoř E. Hály) Ústavu chemických procesů AVČR v Praze, kde byl až do r. 2005 vedoucím skupiny teorie kapalin. Od r. 1990 působil až do r. 2005 jako externista na katedře teoretické fyziky MFF UK (předmět Molekulární simulace ve fyzice mnoha částic). V r. 1996 začal I. Nezbeda spolupracovat s katedrou fyziky UJEP jako externista a po založení Přírodovědecké fakulty v r. 2005 přešel na UJEP na plný pracovní úvazek, kde byl po založení fakulty předsedou Akademického senátu a až do r. 2017 vedoucím katedry chemie; V Ústavu chemických procesů však zůstal dál jako vedoucí vědecký pracovník na částečný úvazek.

Oborem vědecké činnosti I. Nezbedy je obecně statistická fyzika klasických systémů interagujících částic, tj. molekulární teorie tekutin včetně modelování mezimolekulárních interakcí a její aplikace, a molekulární simulace jak z hlediska metodologie tak i jejich aplikací. Jde o interdisciplinární obor spadající v základním výzkumu převážně do chemické (molekulární) fyziky [částečně pak zahrnuje teoretickou fyziku (vypracování základních metod popisu sytémů interagujících částic), fyzikální chemii (termodynamika vícesložkových systémů) a počítačové experimenty], v aplikacích je to pak chemické inženýrství fluidních soustav. Konkrétně to znamená vypracování metod (např. stavových rovnic) umožňujících popis a předpověď rovnovážného stavového chování kapalin a kapalných směsí (jak homogenních, tak i nehomogenních, např. v póru nebo na rozhraní u tuhé stěny) na základě molekulárních parametrů.

I.N. publikoval téměř 250 původních vědeckých prací s velikým citačním ohlasem (přes 5000 citací) s H-indexem 39. Za svoje vědecké výsledky získal dvakrát Cenu kolegia fyzikální chemie ČSSR a v r. 1982 získal (společně s T. Boublíkem) Cenu Akademie věd a v r. 2004 byl nominován Akademií věd za Českou republiku na prestižní Wolf Foundation Prize.

I. Nezbeda je členem ediční rady časopisů Molecular Physics, International Journal of Liquid State Sciences a Journal of Atomic and Molecular Physics. Je narodnim delegátem ve Working Party ‘Thermodynamics and Transport Properties’, Europ. Soc. Chem. Engng. a členem vědeckých výborů EMLG (European Molecular Liquid Group) a CECAM (Centre European de la Calcule Atomique et Moleculaire). Je členem oborové rady programu “Fyzikální chemie” na Přírodovědecké fakultě UK v Praze, oborové rady doktorského studia “Výpočetní vědy” Technické university Ostrava a předsedou oborové rady doktorského studia “Počítačové modelování ve vědě a technice” na UJEP..

V l. 2009-2011 byl předsedou hodnotícího panelu ‘Chemická fyzika-Fyzikální chemie’ Grantové Agentuy ČR. V r. 2014 byl I. Nezbeda Radou pro Výzkum, Vývoj a Inovace jmenován předsedou expertního panelu chemie  a členem expertnho panelu fyzika pro hodocení výsledků výzkumu a vývoje, kde působil až do r. 2018.

Vzdělání

Ivo Nezbeda vystudoval teoretickou fyziku na matematicko-fyzikální fakultě UK v Praze. Vědeckou hodnost CSc. získal v r. 1972 na Akademii věd v oboru fyzikální chemie a hodnost DrSc. v oboru chemická fyzika roněž na Akademii věd. V r. 1994 se habilitoval na matematicko-fyzikální fakultě jako docent a v r. 2001 byl jmenován profesorem teoretické fyziky na UK.

Pedagogická činnost

Vyučované předměty:

  • Fyzika pro chemiky
  • Termodynamika a statistická fyzika

Odborné praxe

V r. 1977 byl I. Nezbeda Postdoctoral Fellow na Rice University v Houstonu, Texas, USA, a v letech 1980-81, 1983, 1992 a 1996 působil jako Visiting Professor na College of Physical and Engineering Sciences, University of Guelph, Guelph, Ontario, Kanada. Ve šk. r. 2000-2001 působil jako Visiting Professor na University of Tennessee v Knoxvillu, Tennessee, USA.V r. 1990 pracoval (3 měsice) jako Visiting Research Scientist na Technische Universitat Wien (Rakousko) a v r. 1999 rovněž 3 měsíce jako Visiting Research Scientist na University of Oklahoma v Normanu, Oklahoma, USA.

Rozvojové a výzkumné projekty

Publikační činnost

  1. Nezbeda I.: Analytic solution of Percus-Yevick equation for fluid of hard spheres. Czech. J. Phys., B24, 55-62 (1974).
  2. Nezbeda I.: On solution of the Percus-Yevick equation for finite-range potential with a hard core. Czech. J. Phys., B24, 703-704 (1974).
  3. Nezbeda I., Boublik T., Trnka O.: Monte Carlo study of the two-dimensional hard spherocylinder system. Czech. J. Phys., B25, 119-122 (1975).
  4. Nezbeda I.: The statistical mechanics of systems with generalised nonspherical pair potential. Czech. J. Phys., B25, 843-853 (1975).
  5. Boublik T., Nezbeda I., Trnka O.: Monte Carlo study of hard spherocylinders. Czech. J. Phys., B26, 1081-1087 (1976).
  6. Jelínek J., Nezbeda I.: Analytic solution of the Percus-Yevick equation for sticky hard sphere potential. Physica, A84, 175-187 (1976).
  7. Nezbeda I.: Virial expansion and an improved equation of state for the hard convex molecule system. Chem. Phys. Lett., 41, 55-58 (1976).
  8. Nezbeda I.: Approximate hard convex body equations of state and boundaries of their validity. Czech. J. Phys., B26, 355-358 (1976).
  9. Nezbeda I.: Soft nonspherical repulsions and properties of non-polar liquids. Czech. J. Phys., B27, 910-919 (1977).
  10. Nezbeda I., Boublik T.: Hard heteronuclear dumb-bell fluid. Czech. J. Phys., B27, 1071-1074 (1977).
  11. Nezbeda I.: Percus-Yevick theory for the system of hard spheres with a square-well attraction. Czech. J. Phys., B27, 247-254 (1977).
  12. Nezbeda I.: Statistical thermodynamics of interaction-site molecules. The theory of hard dumb-bells. Mol. Phys., 33, 1287-1299 (1977).
  13. Boublik T., Nezbeda I.: Equation of state for hard dumb-bells. Chem. Phys. Lett., 46, 315-316 (1977).
  14. Nezbeda I.: On the asymptotic decay of pair correlations. Czech. J. Phys., B27, 481-486 (1977).
  15. Nezbeda I., Boublik T.: Hard oblate spherocylinders: Monte Carlo virial coefficients. Czech. J. Phys., B27, 953-956 (1977).
  16. Nezbeda I.: On liquid-gas phase transition in the PY theory. Czech. J. Phys., B27, 1067-1070 (1977).
  17. Nezbeda I.: Properties of a hard spherocylinder fluid from the blip function theory. Czech. J. Phys., B28, 1071-1080 (1978).
  18. Nezbeda I., Boublik T.: Monte Carlo study of hard spherocylinders. II. Czech. J. Phys., B28, 353-356 (1978).
  19. Smith W.R., Nezbeda I., Melnyk T.W., Fitts D.D.: Reference system selection and the average Mayer-function perturbation theory for molecular fluids. Faraday Discussion Chem. Soc., 66, 130-137 (1978).
  20. Pavlícek J., Nezbeda I., Boublik T.: An accurate equation of state of a hard convex body fluid mixture. Czech. J. Phys., B29, 1061-1070 (1979).
  21. Nezbeda I., Leland T.W.: Conformal theory of hard nonspherical molecule fluids. J. Chem. Soc. Faraday Trans. II, 5, 193-200 (1979).
  22. Nezbeda I., Smith W.R.: The RAM perturbation theory and the hard dumbell fluid. Chem. Phys. Lett., 64, 146-149 (1979).
  23. Nezbeda I., Smith W.R., Boublik T.: Conjectures on fluids of hard spherocylinders, dumbells, and spheres. Mol. Phys., 37, 985-989 (1979).
  24. Nezbeda I., Pavlicek J., Labik S.: Thermodynamic properties of pure hard sphere, spherocylinder, and dumbell fluids. Coll. Czech. Chem. Commun., 44, 3555-3565 (1979).
  25. Nezbeda I., Boublik T.: Monte Carlo studies of mixtures of hard spheres and spherocylinders II. Czech. J. Phys., B30, 953-956 (1980).
  26. Nezbeda I.: Monte Carlo study of hard spherocylinders. III. The angular correlation functions. Czech. J. Phys., B30, 601-612 (1980).
  27. Nezbeda I., Labik S., Malijevský A.: Simple pair potential model for real fluids. II. Transport properties of dilute gases. Czech. J. Phys., B30, 862-869 (1980).
  28. Nezbeda I.: Simple pair potential model for real fluids. Czech. J. Phys., B30, 481-487 (1980).
  29. Boublik T., Nezbeda I.: Monte Carlo study of the equimolar mixture of hard spheres and spherocylinders. Czech. J. Phys., B30, 121-127 (1980).
  30. Smith W.R., Nezbeda I.: Computation of the pair correlation function of a repulsive finite-intercept hard-core simple fluid. Chem. Phys. Lett., 82, 96-99 (1981).
  31. Smith W.R., Nezbeda I.: Perturbation theory for molecular fluids. II. Accurate structural and thermodynamic properties of the hard spherocylinder fluid. Mol. Phys., 44, 347-361 (1981).
  32. Nezbeda I., Smith W.R.: The use of a site-centered coordinate system in the statistical mechanics of site interaction molecular fluids. Chem. Phys. Lett., 81, 79-82 (1981).
  33. Nezbeda I., Smith W.R.: Equation of state of site-interaction fluids from the site-site correlation function. J. Chem. Phys., 75, 4060-4063 (1981).
  34. Nezbeda I.: Simple pair potential model for real fluids. III. Parameter determination and a revised model for spherical molecules. Czech. J. Phys., B31, 563-571 (1981).
  35. Labik S., Malijevský A., Nezbeda I.: The radial distribution function of a soft-repulsive hard core particle system. Czech. J. Phys., B31, 8-15 (1981).
  36. Cummings P., Nezbeda I., Smith W.R.,Morriss G.: Monte Carlo simulation results for the full pair correlation function of the hard dumbell fluid. Mol. Phys., 43, 1471-1475 (1981).
  37. Melnyk T., Smith W.R., Nezbeda I.: Perturbation theories for molecular fluids. III. RAM theory results for Lennard-Jones diatomic and quadrupolar fluids. Mol. Phys., 46, 629-640 (1982).
  38. Nezbeda I., Smith W.R.: The site-site correlation functions of molecular fluids. I. Computation via zeroth-order perturbation theory. Mol. Phys., 45, 681-694 (1982).
  39. Nezbeda I., Labik S.: Fluid of general hard triatomic molecules. I. Virial coefficients. Mol. Phys., 47, 1087-1096 (1982).
  40. Smith W.R., Nezbeda I., The reference average Mayer-function (RAM) perturbation theory for molecular fluids, in Molecular-Based Study of Fluids, J. Haile and G.A. Mansoori, Editors. 1983, Am. Chem. Soc.: Washington, D. C. p. 235-279.
  41. Labik S., Nezbeda I.: Fluid of general hard triatomic molecules. II. Monte Carlo simulation results for a non-linear molecule model. Mol. Phys., 48, 97-109 (1983).
  42. Aim K., Nezbeda I.: Perturbed hard sphere equations of state of real liquids. I. Examination of a simple equation of the second order. Fluid Phase Equil., 12, 235-251 (1983).
  43. Nezbeda I., Smith W.R., Labik S.: Perturbation theory for the Lennard-Jones diatomic fluid. I. Site-centered spherical harmonic coefficients. J. Chem. Phys., 79, 6242-6253 (1983).
  44. Nezbeda I., Boublik T.: On the possible eqivalence of hard convex molecule fluids. Mol. Phys., 51, 1443-1447 (1984).
  45. Nezbeda I., Smith W.R., Labik S.: Perturbation theory for the Lennard-Jones diatomic fluid. II. Thermodynamic and quasithermodynamic properties. J. Chem. Phys., 81, 935-943 (1984).
  46. Smith W.R., Nezbeda I.: A simple model for associated fluids. J. Chem. Phys., 81, 3694-3699 (1984).
  47. Smith W.R., Nezbeda I., Labik S.: A simple pseudo-molecular fluid model. Exact and approximate structural properties. J. Chem. Phys., 80, 5219-5229 (1984).
  48. Smith W.R., Nezbeda I., Reddy M.R.: The RAM perturbation theory for inhomogeneous molecular fluids: hard dumbells at a hard wall. Chem. Phys. Lett., 106, 575-578 (1984).
  49. Nezbeda I., Aim K.: Perturbed hard sphere equations of state of real fluids. II. Effective hard sphere diameters and residual properties. Fluid Phase Equil., 17, 1-18 (1984).
  50. Labik S., Nezbeda I., Smith W.R.: The site-site pair correlation functions of molecular fluids. II. RAM theory results for hard heteronuclear diatomics. Mol. Phys., 52, 815-825 (1984).
  51. Nezbeda I.: Towards a new spherical reference for molecular fluids. Mol. Phys., 54, 1009-1014 (1985).
  52. Nezbeda I.: Hard body fluids again: virial coefficients and equations of state. Czech. J. Phys., B35, 752-767 (1985).
  53. Nezbeda I., Reddy M.R., Smith W.R.: Computer simulation studies of molecular fluid mixtures. I. Hard spheres, heteronuclear dumbells and linear triatomics. Mol. Phys., 55, 447-462 (1985).
  54. Nezbeda I., Voertler H.L.: MC simulation results for a hard core model of carbon tetrachloride. Mol. Phys., 57, 909-918 (1986).
  55. Boublik T., Nezbeda I.: P-V-T behaviour of hard body fluids. Theory and experiment. Coll. Czech. Chem. Commun., 51, 2301-2432 (1986).
  56. Kolafa J., Nezbeda I.: Monte Carlo simulations on primitive models of water and methanol. Mol. Phys., 61, 161-175 (1987).
  57. Labik S., Smith W.R., Nezbeda I.: The RAM perturbation theory for molecular fluid mixtures. I. Site-centred correlation functions. Mol. Phys., 62, 775-784 (1987).
  58. Labik S., Malijevský A., Nezbeda I.: Correlation functions of hard-body fluids from thermodynamic properties of their mixtures. Mol. Phys., 60, 1107-1120 (1987).
  59. Nezbeda I., Aim K.: Perturbed hard sphere equations of state. Fluid Phase Equil., 34, 171-188 (1987).
  60. Strnad M., Nezbeda I.: The second virial coefficient of quadrupolar dumbells. Czech. J. Phys., B37, 1261-1276 (1987).
  61. Nezbeda I., Triska B., Malijevský A.: The fifth virial coefficients of hard body fluids. Czech. J. Phys., B38, 1234-1242 (1988).
  62. Nezbeda I., Kolafa J., Kalyuzhnyi Y.V.: Primitive model of water. II. Theoretical results for the structure and thermodynamic properties. Mol. Phys., 68, 143-160 (1989).
  63. Nezbeda I., Labik S., Malijevsky A.: Structure of hard body fluids. Critical compilation of selected computer simulation data. Coll. Czech. Chem. Commun., 54, 1137-1202 (1989).
  64. Nezbeda I., Aim K.: On the way from theoretical calculations to practical equations of state for real fluids. Fluid Phase Equil., 52, 39-46 (1989).
  65. Nezbeda I., Aim K., Kolafa J.: On volume-explicit equations of state: hard-body and real fluids. Z. phys. Chem. (Leipzig), 270, 533-539 (1989).
  66. Nezbeda I., Kolafa J., Labik S.: The spherical harmonic expansion coefficients and multidimensional integrals in theories of liquids. Czech. J. Phys., B39, 65-79 (1989).
  67. Voertler H.L., Kolafa J., Nezbeda I.: Computer simulation studies of hard body fluid mixtures. II. Mol. Phys., 68, 547-561 (1989).
  68. Aim K., Nezbeda I.: Thermodynamic properties of the Lennard-Jones fluid. I. Simulation data, rigorous theories and parametrized equations of state. Fluid Phase Equil., 48, 11-22 (1989).
  69. Kolafa J., Nezbeda I.: Implementation of the Dahl-Andersen-Wertheim theory for realistic water-water potentials. Mol. Phys., 66, 87-95 (1989).
  70. Nezbeda I., Kolafa J.: On perturbation expansion for associated liquids. Czech. J. Phys., B40, 138-150 (1990).
  71. Voertler H.L., Nezbeda I.: Volume-explicit equation of state and excess volume of mixing of fused-hard-sphere fluids. Ber. Bunsenges. Phys. Chem., 94, 559-563 (1990).
  72. Nezbeda I., Iglesias-Silva G.A.: Primitive model of water. III. Analytic theoretical results with anomalies for the thermodynamic properties. Mol. Phys., 69, 767-774 (1990).
  73. Kalyuzhnyi Y.V., Holovko M.F., Nezbeda I.: Analytic solution of the RISM equation for n-atomic symmetric molecules. Czech. J. Phys., B40, 1098-1106 (1990).
  74. Nezbeda I., Kolafa J., Towards a molecular theory of water, in Properties of water and steam, M.P.a. O.Šifner, Editor. 1990, Hemisphere Publ. Co.: New York. p. 539-546.
  75. Nezbeda I., Reddy M.R., Smith W.R.: Monte-Carlo study of hard-body fluids at a hard wall: pure fluids and mixtures of spheres, heteronuclear dumbbells and linear triatomics. Mol. Phys., 71, 915-929 (1990).
  76. Kolafa J., Nezbeda I.: Primitive models of associated liquids: equation of state, liquid-gas phase transition and percolation threshold. Mol. Phys., 72, 777-785 (1991).
  77. Nezbeda I., Kolafa J.: A new version of the insertion particle method for determining the chemical potential by Monte Carlo simulation. Mol. Simul., 5, 391-403 (1991).
  78. Nezbeda I., Kahl G.: First order correction to the three-body correlation function. Chem. Phys. Lett., 183, 337-339 (1991).
  79. Kalyuzhnyi Y.V., Nezbeda I.: Analytic solution of the Wertheim’s OZ equation for the Smith-Nezbeda model of associated liquids. Mol. Phys., 73, 703-713 (1991).
  80. Nezbeda I., Smith W.R.: Theory of the glass transition and the amorphous state. I. The hard-sphere fluid. Mol. Phys., 75, 789-803 (1992).
  81. Kolafa J., Voertler H.L., Aim K., Nezbeda I.: The Lennard-Jones fluid revisited. I. Computer simulation results. Mol. Simul., 11, 305-319 (1993).
  82. Nezbeda I.: Molecular-thermodynamic reference equations of state. Fluid Phase Equil., 87, 237-253 (1993).
  83. Nezbeda I., Voertler H.L.: Volume-explicit perturbed hard-sphere equation of state for gases at high pressures. Ber. Bunsenges. Phys. Chem., 97, 128-133 (1993).
  84. Aim K., Kolafa J., Nezbeda I., Voertler H.L.: The Lennard-Jones fluid revisited: new thermodynamic data and new equation of state. Fluid Phase Equil., 83, 15-22 (1993).
  85. Nezbeda I., Smith W.R., Kolafa J.: Molecular theory of phase equilibria in model associated mixtures: I. Binary mixtures of water and a simple fluid. J. Chem. Phys., 100, 2191-2201 (1994).
  86. Kolafa J., Nezbeda I.: The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state. Fluid Phase Equil., 100, 1-34 (1994).
  87. Nezbeda I., Kolafa J., Pavlicek J., Smith W.R.: Molecular theory of phase equilibria in model and real associated mixtures. II. Binary aqueous mixtures of inert gases and n-alkanes. J. Chem. Phys., 102, 9638-9646 (1995).
  88. Kolafa J., Nezbeda I.: The hard tetrahedron fluid: a model for the structure of water. Mol. Phys., 84, 421-434 (1995).
  89. Nezbeda I., Kolafa J.: The use of control quantities in computer simulation experiments: application to the exp-6 potential fluid. Mol. Simul., 14, 153-163 (1995).
  90. Nezbeda I., Strnad M.: Monte Carlo simulations in the vicinity of the critical point: vapor-liquid coexistence curve. Czech. J. Phys., B45, 793-798 (1995).
  91. Strnad M., Nezbeda I.: Equation of state and chemical potential of ternary mixtures of hard spheres and heteronuclear diatomics. Mol. Phys., 85, 91-101 (1995).
  92. Pavlicek J., Nezbeda I.: Application of primitive models of association: a simple theoretical equation of state of water. Fluid Phase Equil., 116, 530-536 (1996).
  93. Nezbeda I., Slovak J.: Can Lennard-Jones particles with four bonding sites realistically model water. Chem. Phys. Lett., 260, 336-340 (1996).
  94. Voertler H.L., Nezbeda I., Lisal M.: The exp-6 potential fluid at very high pressures. Computer simulations and theory. Mol. Phys., 92, 813-824 (1997).
  95. Nezbeda I.: Simple short-ranged models of water and their application. A review. J. Mol. Liquids, 73,74, 317-336 (1997).
  96. Nezbeda I., Kolafa J., Smith W.R.: Molecular theory of phase equilibria in model and real associated mixtures: III. Binary  solutions of inert gases and n-alkanes in ammonia and methanol. Fluid Phase Equil., 130, 133-156 (1997).
  97. Nezbeda I.: Fluids of pseudo-hard bodies. Mol. Phys., 90, 661-664 (1997).
  98. Nezbeda I., Kolafa J., Smith W.R.: On global phase diagrams of binary mixtures. I. Systematic basis for describing types of phase equilibrium phenomena. J. Chem. Soc. Faraday Trans., 93, 3073-3080 (1997).
  99. Nezbeda I., Slovák J.: A family of primitive models of water: three- four-, and five-site models. Mol. Phys., 90, 353-372 (1997).
  100. Slovak J., Nezbeda I.: Extended 5-site primitive models of water: theory and computer simulations. Mol. Phys., 91, 1125-1136 (1997).
  101. Strnad M., Nezbeda I.: Extended primitive models of water revisited. Mol. Phys., 93, 25-30 (1998).
  102. Smith W.R., Nezbeda I., Strnad M., Triska B., Labik S.: Generalized thermodynamic perturbation theory for polyatomic fluid mixtures. I. Formulation and results for chemical potentials. J. Chem. Phys., 109, 1052-1061 (1998).
  103. Kolafa J., Nezbeda I., Pavlíèek J., Smith W.R.: Global phase diagrams of model and real binary fluid mixtures: Lorentz-Berthelot mixture of attractive hard spheres. Fluid Phase Equil., 146, 103-121 (1998).
  104. Predota M., Nezbeda I., Kalyuzhnyi Y.V.: Fluids of pseudo-hard bodies. II. Hard-body reference systems for water, methanol, and ammonia. Mol. Phys., 94, 937-948 (1998).
  105. Nezbeda I.: Structure of water: short-ranged versus long-ranged forces. Czech. J. Phys., B48, 117-122 (1998).
  106. Lisal M., Nezbeda I.: Pure fluids of homonuclear and heteronuclear square-well diatomics. I. Computer simulation study. Mol. Phys., 96, 335-347 (1999).
  107. Kolafa J., Nezbeda I., Pavlicek J., Smith W.R.: Global phase diagrams of model and real binary fluid mixtures. Part II. Non-Lorentz-Berthelot mixture of attractive hard spheres. Phys. Chem. Chem. Phys., 1, 4233-4240 (1999).
  108. Nezbeda I., Pavlicek J., Kolafa J., Galindo A., Jackson G.: Global phase behavior of model mixtures of water and n-alkanols. Fluid Phase Equil., 158-160, 193-199 (1999).
  109. Nezbeda I., Kolafa J.: Effect of short- and long-range forces on the structure of water: temperature and density dependence. Mol. Phys., 97, 1105-1116 (1999).
  110. Lisal M., Nezbeda I., Vörtler H.L.: Fluid-solid boundary of the compressed exp-6 fluids. Fluid Phase Equil., 154, 49-54 (1999).
  111. Lisal M., Nezbeda I., Smith W.R.: The reaction ensemble method for the computer simulation of chemical and phase equilibria. II. The Br2+Cl2+BrCl system. J. Chem. Phys., 110, 8597-8604 (1999).
  112. Lisal M., Smith W.R., Nezbeda I.: The accurate computer simulation of phase equilibrium for complex fluid mixtures. Application to binaries involving isobutene, methanol, methyl tert-butyl ether, and n-butane. J. Phys. Chem. B, 103, 10496-10505 (1999).
  113. Nezbeda I., Cummings P.T.: Fifth Liblice Conference on the Statistical Mechanics of Liquids (June 7-12, 1998, Zelezna Ruda, Czech Republic), . 1999, Mol. Phys. p. 96, 1583-1585.
  114. Strnad M., Nezbeda I.: An extended Gibbs ensemble. Mol. Simul., 22, 193-198 (1999).
  115. Predota M., Nezbeda I.: Hydrophobic hydration at the level of primitive models. Mol. Phys., 96, 1237-1248 (1999).
  116. Kolafa J., Nezbeda I.: Effect of short- and long-range forces on the structure of water. II. Orientational ordering and the dielectric constant. Mol. Phys., 98, 1505-1520 (2000).
  117. Nezbeda I.: Solubility of apolar fluids in water: A simple molecular model and theory. Fluid Phase Equil., 170, 13-22 (2000).
  118. Lisal M., Smith W.R., Nezbeda I.: Molecular simulation of multicomponent reaction and phase equilibria in MTBE ternary system. AIChE J., 46, 866-875 (2000).
  119. Nezbeda I.: On the role of short- and long-range forces in aqueous systems. J. Mol. Liquids, 85, 249-255 (2000).
  120. Strnad M., Nezbeda I.:  Parallelized sampling of the Gibbs ensemble. Mol. Phys., 98, 1887 (2000).
  121. Lisal M., Smith W.R., Nezbeda I.: Computer simulation of the thermodynamic properties of high-temperature chemically-reacting plasmas. J. Chem. Phys., 113, 4885-4895 (2000).
  122. Nezbeda I.: On dispersion force correction terms in perturbed equations of state. Fluid Phase Equil., 180, 175-181 (2001).
  123. Lisal M., Smith W.R., Nezbeda I.: Accurate vapor-liquid equilibrium calculations for complex systems using the reaction Gibbs ensemble Monte Carlo simulation method. Fluid Phase Equil., 181, 127-146 (2001).
  124. Nezbeda I., Weingerl U.: A molecular-based theory for the thermodynamic properties of water. Mol. Phys., 99, 1595-1606 (2001).
  125. Kettler M., Voertler H.L., Nezbeda I., Strnad M.: Coexistence properties of higher n-alkanes modelled as Kihara fluids: Gibbs ensemble simulations. Fluid Phase Equil., 181, 83-94 (2001).
  126. Nezbeda I., Lisal M.: Effect of short and long range forces on the thermodynamic properties of water. A simple short range reference system. Mol. Phys., 99, 291-300 (2001).
  127. Kolafa J., Nezbeda I., Lisal M.: Effect of short- and long-range forces on the properties of fluids. III. Dipolar and quadrupolar fluids. Mol. Phys., 99, 1751-1764 (2001).
  128. Nezbeda I.: On molecular-based equations of state. Rigor versus speculations. Fluid Phase Equil., 182, 3-15 (2001).
  129. Nezbeda I.: Can we understand (and model) aqueous solutions without any electrostatic interactions? Mol. Phys., 99, 1631-1639 (2001).
  130. Kettler M., Nezbeda I., Chialvo A.A., Cummings P.T.: Effect of the range of interactions on the properties of fluids. Phase equilibria in pure carbon dioxide, acetone, methanol, and water. J. Phys. Chem. B, 106, 7537-7546 (2002).
  131. Lisal M., Kolafa J., Nezbeda I.: An examination of the five-site potential (TIP5P) for water. J. Chem. Phys., 117, 8892-8897 (2002).
  132. Predota M., Nezbeda I., Cummings P.T.: Hydrophobic hydration at the level of primitive models. II. Large solutes and water restructuring. Mol. Phys., 100, 2189-2200 (2002).
  133. Vlcek L., Nezbeda I.: Size and shape dependence of the hydrophobic hydration at the level of primitive models. PCCP, 4, 3704-3711 (2002).
  134. Predota M., Ben-Naim A., Nezbeda I.: On independence of the solvation of interaction sites of a water molecule. J. Chem. Phys., 118, 6446-6454 (2003).
  135. Vlcek L., Slovak J., Nezbeda I.: Thermodynamic perturbation theory of the second-order: Implementation for models with double-bonded sites. Mol. Phys., 101, 2921-2927 (2003).
  136. Slovak J., Nezbeda I.: On accuracy of Wertheim’s thermodynamic perturbation theory for primitive models of water. Mol. Phys., 101, 789-798 (2003).
  137. Nezbeda I.: Modeling of aqueous electrolytes at a molecular level: Simple short-range models and structure breaking and structure enhancement phenomena. J. Mol. Liquids, 103-104C, 309-317 (2003).
  138. Vlcek L., Nezbeda I.: From realistic to primitive models: a primitive model of methanol. Mol. Phys., 101, 2987-2996 (2003).
  139. Lisal M., Nezbeda I.: Conformations of attractive, repulsive, and amphiphilic polymer chains in a simple supercritical solvent: Molecular simulation study. J. Chem. Phys., 119, 4026-4034 (2003).
  140. Lisal M., Nezbeda I., Smith W.R.: Vapor-liquid equilibria in five-site (TIP5P) models of water. J. Phys. Chem. B, 108, 7412-7414 (2004).
  141. Lisal M., Nezbeda I.:  Conformations of homopolymer chains and their phase behavior in a simple supercritical solvent. Fluid Phase Equil., 222-223C, 247-254 (2004).
  142. Vlcek L., Nezbeda I.: Thermodynamics of simple models of associating fluids: Primitive models of ammonia, methanol, ethanol, and water. Mol. Phys., 102, 771-781 (2004).
  143. Nezbeda I., Vlcek L.: Thermophysical properties of fluids: From realistic to simple models and their applications. Int. J. Thermophys., 25, 1037-1049 (2004).
  144. Nezbeda I., Smith W.R.: On the calculation of the critical temperature from the second virial coefficient. Fluid Phase Equil., 216, 183-186 (2004).
  145. Vlcek L., Nezbeda I.: From realistic to simple models of associating fluids. II. Primitive models of ammonia, ethanol, and models of water revisited. Mol. Phys., 102, 485-497 (2004).
  146. Nezbeda I.: Role of the range of intermolecular interactions in fluids. Current Opinion in Colloid and Interface Science, 9, 107-111 (2004).
  147. Vlcek L., Nezbeda I.: From realistic to simple models of fluids. III. Primitive models of carbon dioxide, hydrogen sulphide, and acetone, and their properties. Mol. Phys., 103, 1905-1915 (2005).
  148. Nezbeda I.: Towards a unified view of fluids. Mol. Phys., 103, 59-76 (2005).
  149. Trokhymchuk A., Nezbeda I., Jirsak J., Henderson D.: Hard-sphere radial distribution function again. J. Chem. Phys., 123, 024501-10 (2005).
  150. Nezbeda I., Kolafa J., On the Role of the Range of Intermolecular Interactions in Fluids, in “Ionic Soft Matter: Modern Trends in Theory and Applications”, D. Henderson, M. Holovko, and A. Trokhymchuk, (Editors). Springer (Dordrecht), 2005.
  151. Vlcek L., Nezbeda I.: Potential of mean force between ions in infinitely diluted simple short-range models of aqueous electrolytes. Cond. Matter Phys., 8, 261-270 (2005).
  152. Chialvo A.A., Kettler M., Nezbeda I.: Effect of the range of interactions on the properties of fluids. Part II. Structure and phase behavior of acetonitrile, hydrogen fluoride, and formic acid. J.  Phys. Chem. B, 109, 9736-9750 (2005).
  153. Moucka F., Nezbeda I.: Detection and characterization of structural changes in the hard-disk fluid under freezing and melting conditions. Phys. Rev. Lett., 94, 040601 (2005).
  154. Gonzales-Salgado D., Nezbeda I.: Excess properties od aqueous mixtures of methanol: Simulation versus experiment. Fluid Phase Equil., 240, 161-166 (2006).
  155. Lisal M., Nezbeda I., Ungerer P., Teuler J. M., Rousseau B.: Low-temperature vapor-liquid equilibria from parallelized molecular dynamics simulations. Application to 1- and 2-methylnaphthalene. J. Phys. Chem. B, 110 , 12083-12088 (2006).
  156. Jedlovszky P., Predota M., Nezbeda I.: Hydration of apolar solutes of varying size. A systematic study. Mol. Phys., 104 , 2465-2476 (2006).
  157. Nezbeda I., Kolafa J., Lisal M.: Molekularni simulace klasickych tekutin. Ces. cas. fyz. A, 2006 , 148-151 (2006).
  158. Smith W. R., Lisal M., Nezbeda I.: Molecular-level Monte Carlo simulation at fixed entropy. Chem. Phys. Lett., 426 , 436-440 (2006).
  159. Vega C., Abascal J. L. F., Nezbeda I.: Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P like models: TIP4P/Ew, TIP4P/2005, and TIP4P/Ice. J. Chem. Phys., 125 , 034503 (2006).
  160. Vlcek L., Nezbeda I.: Excess properties of aqueous mixtures of methanol: Simple models versus experiment. J. Mol. Liq., 131-132, 158-162 (2007).
  161. Jirsak J., Nezbeda I.: Molecular mechanisms underlying the thermodynamic properties of water. J. Mol. Liq., 134, 99-106 (2007).
  162. Rouha M., Nezbeda I.: Lower virial coefficients of primitive models of polar and associating fluids. J. Mol. Liq., 134, 107-110 (2007).
  163. Moucka F., Rouha M., Nezbeda I.: Efficient multi-particle sampling in Monte Carlo simulations on fluids: Application to polarizable models. J. Chem. Phys., 126, 224106-13 (2007).
  164. Jirsak J., Nezbeda I.: Molecular-based equation of state for TIP4P water. J. Mol. Liq., 136, 310-316 (2007).
  165. Melnyk R., Moucka F., Nezbeda I., Trokhymchuk A.: A novel perturbation theory for the structure factor of the attractive hard-core Yukawa fluid . J. Chem. Phys., 127, 094510-8 (2007).
  166. Jirsak J., Nezbeda I.: Towards a statistical mechanical theory of water: Analytical theory for a short-ranged reference system. J. Chem. Phys., 127, 124508-7 (2007).
  167. Figueroa-Gerstenmaiera S., Francova M., Kowalski M., Lisal M., Nezbeda I., Smith W. R.: Molecular-level computer simulation of a vapor-compression refrigeration cycle. Fluid Phase Equil., 259, 195-200 (2007).
  168. Skvor J., Nezbeda I., Brovchenko I., Oleinikova A.: Percolation transition in fluids: Scaling behavior of the spanning probability functions. Phys. Rev. Lett., 99, 127801-4 (2007).
  169. Skvor J., Nezbeda I.: On universality of the wrapping percolation transition. Coll. Czech. Chem. Commun., 73, 401-412 (2008).
  170. Kolafa J., Moucka F., Nezbeda I.: Handling electrostatic interactions in molecular simulations: A systematic study. Coll. Czech. Chem. Commun., 73, 481-506 (2008).
  171. Jirsak J., Nezbeda I.: Fluid of hard spheres with a modified dipole: Simulation and theory. Coll. Czech. Chem. Commun., 73, 541-557 (2008).
  172. Rouha M., Moucka F., Nezbeda I.: The effect of cross interactions on mixing properties: Non-Lorentz-Berthelot Lennard-Jones mixtures. Coll. Czech. Chem. Commun., 73, 533-540 (2008).
  173. Rouha M., Nezbeda I.: Thermodynamics of pseudo-hard body mixtures. Mol. Phys., 106, 2481-2485 (2008).
  174. Rouha M., Nezbeda I.: Non-Lorentz-Berthelot Lennard-Jones mixtures: A systematic study. Fluid Phase Equil., 277, 42-48 (2009).
  175. Rouha M., Nezbeda I.: Fluids of pseudo-hard bodies: From simulations to equations of state. Fluid Phase Equil., 278, 15-19 (2009).
  176. Melnyk R., Nezbeda I., Henderson D., Trokhymchuk A.: On the role of the reference system in perturbation theory: An augmented van der Waals theory of simple fluids. Fluid Phase Equil.,279, 1-10 (2009).
  177. Moucka F., Nezbeda I.: Multi-particle sampling in Monte Carlo simulations on fluids: Efficiency and extended implementations. Mol. Simul., 35, 660-672 (2009).
  178. Moucka F., Nezbeda I.: Partial molar volume of methanol in water: Effect of polarizability. Coll. Czech. Chem. Commun., 74, 559-563 (2009).
  179. Skvor J., Nezbeda I.: Percolation threshold parameters of fluids. Phys. Rev. E, 79, 041141-7 (2009).
  180. Smith W. R., Francova M., Kowalski M., Nezbeda I.: Refrigeration cycle design for refrigerant mixtures by molecular simulation. Coll. Czech. Chem. Commun., 75, 383-391 (2010).
  181. Melnyk R., Orea P., Nezbeda I., Trokhymchuk A.: Liquid/vapor coexistence and surface tension of the Sutherland fluid with a variable range of interaction: Computer simulation and perturbation theory studies. J. Chem. Phys., 132, 134504-8 (2010).
  182. Predota M., Nezbeda I., Parez S.: Coarse-grained potential for interaction with a spherical colloidal particle and planar wall. Coll. Czech. Chem. Commun., 75, 527-545 (2010).
  183. Jirsak J., Nezbeda I.: A note on scenarios of metastable water. Coll. Czech. Chem. Commun., 75, 593-605 (2010).
  184. Moucka F., Nezbeda I.: The multi-particle sampling method in Monte Carlo simulations on fluids and its efficient implementations. Mol. Simul., 36, 526-534 (2010).
  185. Krejci J, Nezbeda I., Melnyk R., Trokhymchuk A.: EXP6 fluids at extreme conditions modeled by 2-Yukawa potentials. J. Chem. Phys., 133, 094503-8 (2010).
  186. Nezbeda I., Melnyk R., Trokhymchuk A.: A new concept for augmented van der Waals equations of state.  J. Supercrit. Fluids, 55, 448-454 (2010).
  187. Skvor J., Nezbeda I.: Percolation line and response functions in simple supercritical fluids. Mol. Phys., 109, 133-139 (2011).
  188. Melnyk R., Nezbeda I., Trokhymchuk A.: Vapour/liquid coexistence in long-range Yukawa fluids determined by means of an augmented van der Waals approach. Mol. Phys., 109, 113-121 (2011).
  189. Rouha M., Nezbeda I.: Excess properties of aqueous solutions: Hard spheres versus pseudo-hard bodies. Mol. Phys., 109, 613-617 (2011).
  190. Moucka F., Nezbeda I.: Water-methanol mixtures with non-Lorentz-Berthelot combining rules. J. Mol. Liq., 159, 47-51 (2011).
  191. Nezbeda I., Melnyk R., Trokhymchuk A.: Augmented van der Waals equations of state: SAFT-VR versus Yukawa based van der Waals equation. Fluid Phase Equil., 309, 174-178 (2011).
  192. Moucka F., Lisal M., Skvor J., Jirsak J., Nezbeda I., Smith W. R.: Molecular Simulation of Aqueous Electrolyte Solubility: 2. Osmotic Ensemble Monte Carlo Methodology for Free Energy and Solubility Calculations and Application to NaCl. J. Phys. Chem. B, 115, 7849-7861 (2011).
  193. Krejci J., Nezbeda I., Melnyk R., Trokhymchuk A.: Virial coefficients and vapor-liquid equilibria of the EXP6 and 2-Yukawa fluids. Cond. Mater. Phys., 14, 23004-8 (2011).
  194. Hlushak S., Trokhymchuk A., Nezbeda I.: Improved first order mean spherical approximation for simple fluids. Cond. Matter Phys.,14, 33004-8 (2011).
  195. Nezbeda I., Jirsak J.: Water and aqueous solutions: Simple non-speculative model approach. Phys. Chem. Chem. Phys., 13, 19689-19703 (2011).
  196. Krejci J., Nezbeda I., Melnyk R., Trokhymchuk A.: Mean spherical approximation for the Lennard-Jones-like two Yukawa model: Comparison against Monte Carlo data. Cond. Matter Phys., 14, 33005-12 (2011).
  197. Krejci J., Nezbeda I.: The critical temperature and properties of real gas from low order perturbed virial expansions. Fluid Phase Equil., 314, 156-160 (2012).
  198. Skvor J., Nezbeda I.: Percolation line, response functions, and Voronoi polyhedra analysis in supercritical water. Cond. Matt. Phys., 15, 23301-8 (2012).
  199. Nezbeda I., Skvor J.: Excluded volume versus hydrogen bonding: Complementary or incompatible concepts?. Mol. Phys.,110, 2987-2992 (2012).
  200. Nezbeda I., Rouha M.: Extended excluded volume: Its origin and consequences. Pure Appl. Chem., 85, 201-210 (2013).
  201. Moucka F., Nezbeda I., Smith W. R.: Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations. J. Chem. Phys., 138, 154102-9 (2013).
  202. Moucka F., Nezbeda I., Smith . R.: Computationally efficient Monte Carlo simulations for polarizable models: multi-particle-move method for water and aqueous electrolytes. Mol. Simul., 39, 1125-1134 (2013).
  203. Moucka F., Nezbeda I., Smith W. R.: Molecular force field development for aqueous electrolytes: 1. Incorporating appropriate experimental data and the inadequacy of simple electrolyte force fields based on Lennard-Jones and point charge interactions with Lorentz-Berthelot rules. J. Chem. Theory Comput., 9, 5076-5085 (2013).
  204. Moucka F., Nezbeda I., Smith W. R.: Molecular Simulation of Aqueous Electrolytes: Water Chemical Potential Results and Gibbs-Duhem Equation Consistency Tests. J. Chem. Phys., 139, 124505-7 (2013).
  205. Moucka F., Nezbeda I.: Gibbs ensemble simulation on polarizable models: Vapor-liquid equilibrium in Baranyai-Kiss models of water. Fluid Phase Equil., 360, 472-476 (2013).
  206. J. Jirsak, J. Skvor, I. Nezbeda: Toward a simple molecular theory of hydrophobic hydration. J. Mol. Liq.,189, 13-19 (2014).
  207. Figueroa-Gerstenmaier S., Lisal M., Nezbeda I., Smith W. R., Trejos V. M.: Prediction of Isoenthalps, Joule-Thomson Coefficients and Joule-Thomson Inversion Curves of Refrigerants by Molecular Simulation. Fluid Phase Equil., 375, 143-151 (2014).
  208. Jirsak J., Moucka F., Nezbeda I.: Insight into Electrospinning via Molecular Simulations. Ind.&Chem. Eng. Res., 53, 8257-8264 (2014).
  209. Jirsak J., Moucka F., Skvor J., Nezbeda I.: Aqueous electrolyte surfaces in strong electric fields: Molecular insight into nanoscale jets and bridges. Mol. Phys. 113, 848-853 (2015).
  210. Vlcek L.; Uhlik F.; Moucka F.; Nezbeda I.; Chialvo A.: Thermodynamics of Small Alkali Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry. J. Phys. Chem. A, 119, 488-500 (2015).
  211. Nezbeda I., Jirsak J., Moucka F., Smith W. R.: Surfaces of aqueous solutions in strong electric field. Molecular insight into bridging and jetting phenomena. Cond. Matt. Phys., 18, 13602-10 (2015).
  212. Trokhymchuk A., Melnyk R., Nezbeda I.: Virial expansions and augmented van der Waals approach: Application to Lennard-Jones-like Yukawa fluid. Cond. Matt. Phys., 18, 13501-12 (2015).
  213. Smith W. R., Moucka F., Nezbeda I.: Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields. J. Chem. Theory Comput., 11, 1756-1764 (2015).
  214. Chialvo A., Moucka F., Vlcek L., Nezbeda I.: Vapor-liquid Equilibrium and Polarization Behavior of the GCP Water ModelGaussian Charge-on-spring versus Dipole Self-consistent Field approaches to induced polarization. J. Phys. Chem. B, 119, 5010-5019 (2015).
  215. Smith W. R., Moucka F., Nezbeda I.: Osmotic Pressure of Aqueous Electrolyte Solutions via Molecular Simulations of Chemical Potentials: Application to NaCl. Fluid Phase Equil., 407, 76-83 (2016).
  216. Nezbeda I., Moucka F., Smith W. R.: Recent progress in molecular simulation of aqueous electrolytes: Force fields, chemical potentials and solubility. Mol. Phys.114, 1665-1690 (2016).
  217.  Melnyk R., Nezbeda I., Trokhymchuk A.: Structure factor of a hard-core fluid with short-range Yukawa attraction: analytical FMSA theory against Monte Carlo simulations. Mol. Phys. 114, 2523-2529 (2016).
  218. Nezbeda I. Jirsak J., Moucka F.: Molecular modeling and simulations. Chap. 13 in Electrospun nanofibers (Mehdi Afshari, Ed.,1st edition). Elsevier, 2016. ISBN 9780081009079.
  219. Nezbeda I.: Simulations of vapor-liquid equilibria: Routine versus thoroughness. J. Chem. & Eng. Data,61, 3964-3969 (2016).
  220. Moucka F., Nezbeda I.: Thermodynamics of supersaturated steam: Molecular simulation results. J. Chem. Phys. 145, 244501-8 (2016).
  221. Trokhymchuk A., Melnyk R., Holovko M., Nezbeda I.: Role of the reference system in study of fluid criticality by effective LGW Hamiltonian approach. J. Mol. Liq. 228, 194-200 (2017).
  222. Rouha M., Nezbeda I.: Second virial coefficients: A route to combining rules? Mol. Phys., 115, 1191-1199 (2017).
  223. Skvor J., Skvara J., Jirsak J., Nezbeda I.: A General Method for Determining Molecular Interfaces and Layers. J. Mol. Graphics Model., 76, 17-35 (2017).
  224. Smith W. R., Jirsak J., Nezbeda I., Qi W.: Molecular Simulation of Caloric Properties of Fluids Modelled by Force Fields with Intramolecular Contributions: Application to Heat Capacities. J. Chem. Phys.147, 034508 (2017).
  225. Skvara J., Skvor J., Nezbeda I.: Evaluation of the contact angle from molecular simulations. Mol. Simul., 44, 190-199 (2018).
  226. Moucka F., Skvara J., Nezbeda I.: Structure of supercooled water: Polarizable BK3 model versus non-polarizable models. J. Mol. Liq., 261, 303-318 (2018).
  227. Smith W. R., Nezbeda I., Kolafa J., Moucka F.: Recent progress in the simulation of thermodynamic properties of aqueous electrolyte solutions. Fluid Phase Equil., 466, 19-30 (2018).
  228. Rouha M., Nezbeda I., Hruby J., Moucka F.: Higher virial coefficients of water. J. Mol. Liq. 270, 81-86 (2018).
  229. Skvara J., Nezbeda I.: Molecular dynamics study of racemic mixtures: Solutions of ibuprofen and β -cyclodextrin in methanol. J. Mol. Liq.265, 791-796 (2018).
  230. Nezbeda I., Moucka F.: Thermodynamics of supersaturated steam: Towards an equation of state. Fluid Phase Equil. 484, 114-121 (2019).
  231. Kalyuzhnyi Yu., Skvara J., Nezbeda I.: Analytic results for the three- and four-particle correlation functions of the fluid of hard disks. J. Chem. Phys. 150, 034502 (2019).
  232. Nezbeda I.: Vapor-liquid equilibria from molecular simulations: Some issues affecting reliability and reproducibility. Mol. Phys. 117, 2814-2821 (2019).
  233. Skvara J., Nezbeda I.: Surface of aqueous solutions of alkali halides: layer by layer analysis. Mol. Simul. 45, 358-372 (2019).
  234. Kalyuzhnyi Yu. V, Nezbeda I., Cummings P. T.: Integral equation theory for a mixture of spherical and patchy colloids: Analytical description. Soft Matter 16, 3456-3465 (2020).
  235. Skvara J., Nezbeda I., Izak P.: Molecular dynamics study of racemic mixtures. II. Temperature dependence of the separation of ibuprofen racemic mixture with β -cyclodextrin in methanol solvent. J. Mol. Liq.,302, 112575-6 (2020).
  236. Nezbeda I.: On molecular-based equations of state: Perturbation theories, simple models, and SAFT modeling. Frontiers in Phys., in press.
  237. Nezbeda I., Skvara J.: On industrial applications of molecular simulations. Mol. Simul., submitted.
  238. Moucka F., Nezbeda I.: Structure of water-methanol mixtures: Non-polarizable versus polarizable models. Mol. Phys., to be submitted.